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Abstract. It has long been recognized that preductivity in manufacturing plants can often be increased by
producing similar products in dedicated manufacturing cells. This involves: (i} assigning parts to individual
machines and (i) forming machines into celis. These two activities have traditionally been carried out
separately. However most solution procedures for (i) above, utitize a solution to (ii), and vice versa. Here we
present, for the first time, a unified integer programiming model that deals with (1) and (i) simultanecusly.

1. INTRODUCTION

Owver 70 years age it was first proposed by
Flanders that transportation could be reduced in
factories by manufacturing  sumilar  items  in
product-criented manufacturing departments. This
theme was further developed in the then Soviet
Union by Sokolovski and Mitrofanoy  who
suggested  that  similar  parts  should be
manutactured together by standardized operations,
Skinner [1974] put forward his concept of a

Lfocused factory, an which small manufacturing

systems  operated independently  within  large
production plants. This idea works best for
medium-variety, medium-volume situations, ie.
batchproduction. The focused  factory i
constructed using the notion of group technology

(GT), which is based on the precept that certain

activities should be dedicated to a family of
related parts in a manufacturing cell. Later
Burbidge [1975] developed and popularized a
systernatic approach to this concept, which has
subsequently seen widespread adoption through
the advanced mapufacturing countries of the
world.

Locating machines in close proximity in a
manufacturing cell, where a family of related parts
are produced, usuafly resulis in a reduction of;
{l'i;li'lSpOi"t requiremsnts, conveyance times, setup
times, and inventory. Moreover, the relatively
large autonomy of a cell leads to extra motivation
of the workers (who are responsible for “their
products” 3, often resulting in higher productivity
and product quality. These, and other advantages,
have been discussed by Shunk [1985] and Hadley
{1996].
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There are two main  types of cellular
manutacturing systems : Group Technology ( GT)
and Flexible Manufacturing Systems ( FMS). GT
is related to FMS in so far as both are sub-systems
which represent “islands” within the production
process consisting of a group of machines
(possibly including a material handling system
and workers) which produce a family of items.
The main difference between those two systems is
that an FMS represents a fully automated system,
whereas in GT, conventional technology generally
predominates. Most of the recent major results in

the cellular manufacturing literature have been
surveyed by Chu {[995], Kusiak & Heragu
[1987], Vakharia [1993], and Wemmerlov and
Hyer {1987].

Suppose that a number of dn‘terentpmduc{s have

o be manufactured wsing certain machine types. It
is known from the process plans of the parts
which machine types are required for producing
the individual paris, and the routing (machine
ordering} for each part is given, We wish to assign
the different parts to the individual machines of
the types reguired and to group the machines so
that each group may form a dedicated
manufacturing  cell. This leads to several
interesting problems, such as:

{ay  Assign part families to groups of machine
types,

(b)  Find fot sizes of the parts produced,

(¢} Determine the minimum number of
machines nieeded of each machine type,

(dy  Assign parts to individual machines,

(e) Form machine cells, and

£ Compate job schedules for the machines.



The so-called machine type-part incidence matrix
specifies which parts are to visit the different
machine types. 1t is desirable that the machine
type-part matrix should be transformed into =
block-diagonal form to solve problem (a} (cf
Hadley {19961 or Kusiak and Chow {1988] ),
Each black then shows which family of parts 15 to
be processed by which machine celll This is
reviewed in Section 2 of this paper.

If such a block-diagonal clustering cannot be
obtained. problems (b} to (e} have to be soived.
Well-known methods from inventory control can
be used to solve problem (b). (See, for example,
Neumann [1996] or Askin and Chiu {1990]) A
method that includes specific information relevant
to group technology has been proposed by Askin
& Chiu {19901, Given the lot sizes for all parts,
we can compute the utilization of each machine
type, which also provides the number of machines
needed of each type, ie, the solution to problem
{¢). Problems (b) and (c) are discussed briefly in
Section 3.

In the literature, problems (d), {e)} and {f} are
generally solved separately. {See, for example,
Hadley [1996}, Neumann [1996] or Askin and
Chiu { 1990.) Problems {d) and (e) are reviewed in
Section 4. However, most solution procedures for
problem (d) utilize a solution to problem {¢) and
vice versa. In Section 5 we present a unified
approach that deals with problems (d) and (&)

We attempt to recrder the machine type rows and
part columns of the machine type-part matrix to
obtain a block diagonal structure. The term
“biock diagonal” implies that we can partition the
maltrix such that the boxes on the main diagonal
contain as many 1’s as possible, but the off-
diagonal boxes contain only O's. If such a block
diagonal structure is obtained, the items which
correspond to columns of one block (constituiing
a family of parts) are processed oaly on those
machine types which correspond to the rows of
that block (group of machine types). Each block is
a candidate for a cell. To order the rows and
columns of the machine type-part matrix, we can
use, for instance, the binary ordering algorithm
described Neumann [1996].

3. COMPUTATION OF LOT SIZES AND
MINIMUM NUMBER OF MACHINES

For part | let : d; be the demand per period or unit
of time, K; be the setup cost, and Dy be the
inveniory holding cost per unit and period. If the
demand does not vary much over time and the
grouping of machines {that is, the forming of
celis) does not affect the lot sizes very much, we
can choose the lor size or batch size g; o be the
econgmic order quantity,

simultaneousiy.

In Section 6 we shall show that, given the solution
to. problems (d) and. (&), the remaining.job-shop
problems can  be secived wusing  weli-known
methods from the literature {cf. Brucker [1995]

and Pineda {19951 Section” 7 summarizes our

conclusions. We shall now briefly discuss these
preblems and sketch methods for solving them
approximately.

2. FORMATION OF FAMILIES OF
PARTS AND THEIR ASSIGNMENTS
TO CELLS OF MACHINE TYPES

Assume that n parts, numbered |, 2, .., n are
processed on m machine types: M, My .., M,
which are to be grouped into cells, The
information as to which parts are to visit the
individual machine types is given by the so-called
machine type-part matrix, with elements:

a2 = 1, if part | is processed on machine type M,
and
0, otherwise, i = 1,2, ., M;i=1,2,..,n
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For {1) we refer to Neumann [1996]. Askin &
Chiu [1990} have -modified the- economic- order
quantity cost function by assuming that the total
throughput time for a part is a multiple of the totai

processing time (including setup time) for a lot of

that part.

Next, for the individual machine types: My, M, ...
, M., we determine the minimum number of
machines needed. Let € be the capacity of a
machine of type M; (measured by its running time
including setup) available per period. Let 5, be the
required setup time per batch or lot of part j for a
machine of type M; {termed the M; machine”), and
let t; be the processing time (without setup time)
for one unit of part j on an M; machine. We do not
consider conveyance fimes because they can be
neglected within a single machine group forming
acell. The processing ttme pyof a job j (that is, a
batch of size g; of part j) on the M; machine is
then

pgj = S;j - ijij . | = 1, 2, Mi;j = 1, 2, vy TL (2)



The utilization uy, of machine type M, by part j is
aiven by

T
= L2 LM j=1.2,n (3)

We set iy = 0 if part | is not processed on M, The
aumerator in {3} represents the running time of
machine type M, per period required for part j. if
uy > Losay, < uy < 20 we introduce a dedicated
M; machine to process part j, which will be
assigned to the same cell as the first M; machine
that processes part j. Thus, we can assume,
without loss of generality, that vy £ 1. That is, one
M; machine is sutficient for processing part j.

Given the utifization uy of machine type M; by
part j (I £ £ n) the minimum number |4, of M,

imachines required for producing all parts, ¢an be
computed as:

Mij=12 ..n (4

ft
L, = Z = L2
=i

where [_(,_] i3 the smailest integer greater than or
equal to ¢ (rounding up). The average urilization
U, of an M; machine is

requires some preliminary knowledge of the
solution to the machine greuping problem.

The machine-part assignment problem can be
modelled as a graph-partitioning problem where
the nodes of the graph correspond to the parts
processed on machine type M; and we seek to
determine a minimum cost graph partition into i,
subgraphs {cf. Neumann [1996]). If 4, = 2, and
no limits are imposed on the number of nodes of
the subgraphs. the graph-partitioning problem can
be solved as a mult-terminal  network in
polynomial time (See, for example, Nagamochi &
Ibaraki [19921.) Otherwise, the graph-partitioning
problem is known to be NP-hard, n the machine-
part assignment problem there 1s & maximum
number of paris which can be processed on a
single machine of type M; due to the limited
capacity of that machine. Thus. the corresponding
graph-partitioning problem is NP-hard for any
)

To reduce the computational effort for seiving the
graph-partitioning problem, it is recommended to
use some heuristic method, for example, the
Kernighan-Lin  heuristic  (Kernighan & Lin
[1970]), preceded by some partition construction
procedure {cf. Neumann [1996] or Askin and
Chiu [1990].}

The construction  procedure  determines  an
assignment of the paris to the machines so that

defined, in the assignment of parts to actual
machines.

4. MACHINE-PART ASBIGNMENT
AND GROUPING OF MACHINES

I part j is processed on machine type M; and 1 >
I, we must specify on which of the ; machines of
type My part j is to be manuvfactured. Thus, for
gach machine type M; with W, > 1, we have to
solve a machine-part assignment problem whose
objective function (to be minimized) should be a
measure of the material flow or material handling
cost berween different cells. In other words, the
solving of the machine-part assignment problem
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machine capacities are not exceeded. Consider a
machine type M; with i, > Tlet §; < {1,2,.., n} be
the set of parts processed on machine type M;. To
construct a feasible solution. assign the parts jel;
successively to the first M; machine, with capacity

 available. If the capacity of the first M, machine is
exceeded, we use a secand machine, and proceed

analogously. Only if none of the u, machines of
type M; have sufficient capacity to process the
entire operation for some part j, can the operation
be divided into partial operations on several
machines.

The solution to the assignment problem for ail
machine types can be summarized in a machine-
part incidence matrix with elements:

by if part j is assigned to actual
machine number r,
0, otherwise.

H

where the actual machine number r stands for
some machine MY (1<k< }.Li).

Given a machine-part incidence matrix, the
meachine grouping problem (that ts, the formation



of cells) can be solved in a number of different
ways. Kusiak & Chow [1998], and others, have
devised  decomposition procedures for  the
machine-part  matrix. Methods proposed by
Neumann [ 1996], or Askin and Chiu {1990], and
others, are based upon a machine graph. FEach
edge [r, s, is assigned a positive value if some
part ], has to be processed on both machines r and
s and if the machine sequence {or routing) of part
1 wontains the subsequence (r, $) or (s, r). That is,
if part j s moved from machine r to machine s, or
vice versa. The weight of edge {1, s] is assigned a
value equal to the sum of the demand rates of the
parts moved frem machine r to machine s or vice
versa. Again, a graph-partitioning probiem can be
formulated and solved by the methods mentioned
above, where the resuiting subgraphs correspond
to the celis.

We now present a unified approach, in the form of
a single model, for the formation of cells which
incorporates into one model, the assignments of
parts to individual machines and the grouping of
machines nto cells,

5. A UNIFIED APPROACH TO THE
FORMATION OF CELLS

We now develop a multicommodity, min-cost,
network circulation flow model for the formation
of ¢cells. The nodes in the network in the model

~cun-be-classitiedin-the-following way The first

set of nodes: Py, Po, ., P, represent the n parts.
The second set of nodes My, My, ..., M, represent
the m machine types. An arc is created (o join
directly node P to node M; if, and only if, g = L.
The capacity of this arc is set as dy = 1, with unit
cost.selas oy = O R

The thied set of nodes: M, ,M7,... Mim
represent the actual machines themselves, with
node Mi‘ representing the k™ machine of type M,
{termed the Mf‘ machine) fori= 1, 2., m k= 1,
2., . Foreach i, i =1, 2, ... m, an arc is
created to join directly node M, to each node M:‘ .
That is, the node for each machine of type M, , is
joined  to  the nodes representing  the
Mlk machines. The capacity of the arc from M, to
M,

k
c; =0

. k . .
is set as d; =1, with unit cost set as

The fourth set of nodes: Cy, Co, ..., C, . Tepresent
the cells that can be formed to group the machines

— 1048 -

into {up to) p cells. As p is unknown, the
following estimate f) of p is used:

p={ (/WL i=1,2, M, (6)
i=}

where

— min+ X
= (b * ) 7“ )| (7

An arc is created to join directly each node M:‘ o

eachnode Cyi= 1,2, . ,mk=1,2, ., w;and q
=1, 2, .., p. That s, the node of each actual
machine is connected to the node of each cell,
allowing for the possibility that any machine can
be aflocated to any cell. The capacity of the arc,

connecting node MY to node C, is set as
dz“‘ = oo, with unit cost set as c? = f(Lj, Kq),

where L; = the inter-cell materials handling cost
for part j, K= the set up cost for the q" cell, and
(L, Ky) = the combined unit cost incurred,
refated to L and K, for a single part j being
assigned to cell g.

The endeavour to minimize the cost of the travel
of alt flow in this network model is subject to

constraints of two types:

{iy Classical network flow constraints:

=  Conservation of flow at all nodes,

e Arc capacity iimits must be observed,
and

¢ Nonnegative flow on all arcs,

{ii) Side constraints:

s After any dedicated machines have
been removed, each part must be
assigned to  exactly one actual
machine of each type.

# Hach actual machine must be
assigned to exactly one cell,

= Each cell must be allocated a number
of machines between a given lower
and upper bound, and

= Logical links between the utilization
variables and  the  assignment
variables.

In order to formulate the necessary constraints we
first define some notation:

Given paramelers:
Ly = the utilization of machine type M, by
part |, {the demand at node P,



Utilization decision variables:

the utilization of machine type M, by
part | that is assigned io the actual
machine M:‘ .

ky

i1 = the utilization of actual machine MY

by part j that is assigned to the cell g,
and

X = the total uiilization, over all machines,

in cell ¢ of part |

Assignment decision variables:
[l iF purt § 1y assigned to machine M;‘ in cell g,

ky _
¥ =

}(} orherwise.
The conservation of flow constraints are:

iEx

=f k=l

i
Z“ajv 1=142,...,m
i=!

(Conservaticn of tlow at each M,y node.)

Jms k=12, 0,

IDRTE MR

i=1 yg=l

k=12, W, iq=12,...p

The side constraints are:

2 Zyk““*l =12,..,

g=l k=l

m; =512,

{After any dedicated machines have been
removed, each remaining unassigned part must he
assigned to exactly one actual machine of each
type. That is, its assignment cannot be split among
more than one actual machine of the same type.)

3 Zyk“ Sl i=12,

g=l g=l

{Each actual machine must be assigned to exactly
one cell)

m Hi

z Z yﬁq '"“'!"Lmin 4= 132,---3}3-

i=l  j=1 k=i

(Each cell actually created must contain no less
than a given, mintmum number of machines)

" . . 'k
{(Conservation of flow at each M, ... node.)
n . m i My
— ky .
)IRTED 3B IR ERNS
=1 =t =l k=l

{Conservation of flow at each C, node.)

(The rotal machine utilization in all cells equals
the total machine utilization of all parts.)

I3
xSl i=12,,
=i

m; k=12,.., 4,

Each machine Mj‘ , cannot be over-utilized.)

The nonnegativity conditions are:

- 1045 —

fy ke o
Xy S yd= L2,....

k=12,

m;j=1,2,...1n
Hog=1200p

(If a part j is not assigned to the actual machine
gk . S - .
Mi then its utilization of that machine must be

Ze10.)

0< x; <Li=12,...,m;j=12..n;

k=12, u,

yii =0,Lfori=12...,m
k=12..,u:9=L2,..p

d=1,2,....n

{The total assignment of parts to each individuai
machine must not exceed its capacity of one unit.
Either a part j is assigned to the k" individual
machine of type 1, which is in cell g, or it is not.)



The objective is to
Minimize

1] P
2 }; f(L;. K, )57
=1 g=

subject to the preceding constraints.

This model can be solved for practical numerical
instances by the technigues for multicommodity
network flow models with side constraints given
by, among others, Ahuja et al. [1993].

. JOB-SHOP SCHEDULING

After the formation of cells, some job-shop
problems have to be solved. A job corresponds to
a lot of some part. For each set of cells with some
inter-cell material flow (briefly called a cell
system), the makespan, that is, the maximum
completion time of all jobs, is to be minimized.
We seek to determine the job sequence for each
machine of the cell system and the job schedules,

which specify the start and completion times of

the jobs. These job-shop problems can be solved
by well-known methods (cf. Brucker [1995] and
Pinedo [1995]).

7. SUMMARY AND COMCLUSIONS

Formiilat £

P. Brucker, Scheduling Algorithms, Springer,
Berlin, 1993,

C.H. Chu, Recent advances in mathematical
programming for cell formation, in
Planning, Design and Analysis of Cellular
Manufacturing Systems A K. Kamrani, HR.
Parasari, DMH. Liles (eds), Elsevier.
Amsterdam, pp 3-46, 1993,

S.W. Hadley, Finding part-machine families
using graph partitioning techniques, ini J.
Prod. Res., 34, 1821-1839, 1998,

B.W. Kernighan and S. Lin, An efficient
heuristic procedure for partitioning graphs,
Bell Svstems Technical Journal, 49, 291 -
307, 1970.

A, Kusiak and W.5. Chow, Decomposition
of Manufacturing Systems, /. Robotics and
Automation, 4, 457 - 471, 1988,

Kusiak and 8.8, Heregu, Group Technology,
Computers and Industry, 9, 83-91, 1987.

H. Nagamochi and T. Ibaraki, Computing
Edge-connectivity in  Multigraphs  and
Capacitated Graphs, SIAM J. Disc. Math., 5,
54 - 66, 1992

afloye
TOTTRUA e O

We-have-reviewed-the-1ssues-in-the
cellular manufacturing cells of: (i) assigning parts
{0 individual machines and (ii) forming individual
machines into cells. We have presented an integer
programming model which combines these two
activities in one model for the first time. We

_believe that the resulting multicommodity network.

flow maodel that resulfts will become a useful tool
for production planners.
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